A new Systematic review from iCAMP-SALSA team

Motorized Mobility Scooters: The Use of Training/Intervention and Technology for Improving Driving Skills in Aging Adults – A Mini-Review

Toosizadeh N.a · Bunting M.b · Howe C.c · Mohler J.d · Sprinkle J.b · Najafi B.a, d 

aInterdisciplinary Consortium on Advanced Motion Performance (iCAMP) and Southern Arizona Limb Salvage Alliance (SALSA), Department of Surgery, College of Medicine, bElectrical and Computer Engineering, cArizona Health Sciences Library, and dArizona Center on Aging, University of Arizona, Tucson, Ariz., USA 




Background: Motorized mobility scooters (MMS) have become the most acceptable powered assistive device for those with impaired mobility, who have sufficient upper body strength and dexterity, and postural stability. Although several benefits have been attributed to MMS usage, there are likewise risks of use, including injuries and even deaths. Objective: The aim of the current review was to summarize results from clinical studies regarding the enhancement of MMS driver safety with a primary focus on improving driving skills/performance using clinical approaches. We addressed three main objectives: (1) to identify and summarize any available evidence (strong, moderate, or weak evidence based on the quality of studies) regarding improved driving skills/performance following training/intervention; (2) to identify types of driving skills/performance that might be improved by training/intervention, and (3) to identify the use of technology in improving MMS performance or training procedure. Methods: Articles were searched for in the following medical and engineering electronic databases: PubMed, Cochrane Library, Web of Science, ClinicalTrials.gov, PsycINFO, CINAHL, ERIC, EI Compendix, IEEE Explore, and REHABDATA. Inclusion criteria included: aging adults or those with ambulatory problems, intervention or targeted training, and clinical trial. Outcomes included: MMS skills/performance. Results: Six articles met the inclusion criteria and are analyzed in this review. Four of the six articles contained training approaches for MMS drivers including skill trainings using real MMS inside and outside (i.e. in the community) and in a 3D virtual environment. The other two studies contain infrastructural assessments (i.e. the minimum space required for safe maneuverability of MMS users) and additional mobility assistance tools to improve maneuverability and to enhance driving performance. Conclusions: Results from the current review showed improved driving skills/performance by training, infrastructural assessments, and incorporating mobility assistance tools. MMS driving skills that can be improved through driver training include: weaving, negotiating with and avoiding pedestrian interference, simultaneous reading of signs and obstacle avoidance in path, level driving, forward and reverse driving, figure 8s, turning in place, crossing left slope, maneuvering down a 2-inch curb, and driving up and down inclines. However, several limitations exist in the available literature regarding evidence of improved driving skills/performance following training/intervention, such as small sample sizes, lack of control groups and statistical analysis.

David G. Armstrong

Dedicated to amputation prevention, wound healing, diabetic foot, biotechnology and the intersection between medical devices and consumer electronics.

Leave a Reply