Automated Detection of Infection in Diabetic Foot Ulcer Images #AI #DeepLearning #MachineLearning #C2SHiPUsing Convolutional Neural Network

More work supporting the ongoing efforts to create a deep learning/AI model to assist in diagnosis of diabetic foot ulcer/wound healing images

J Yogapriya 1Venkatesan Chandran 2M G Sumithra 3B Elakkiya 4A Shamila Ebenezer 5C Suresh Gnana Dhas 6

A bacterial or bone infection in the feet causes diabetic foot infection (DFI), which results in reddish skin in the wound and surrounding area. DFI is the most prevalent and dangerous type of diabetic mellitus. It will mainly occur in people with heart disease, renal illness, or eye disease. The clinical signs and symptoms of local inflammation are used to diagnose diabetic foot infection. In assessing diabetic foot ulcers, the infection has significant clinical implications in predicting the likelihood of amputation. In this work, a diabetic foot infection network (DFINET) is proposed to assess infection and no infection from diabetic foot ulcer images. A DFINET consists of 22 layers with a unique parallel convolution layer with ReLU, a normalization layer, and a fully connected layer with a dropout connection. Experiments have shown that the DFINET, when combined with this technique and improved image augmentation, should yield promising results in infection recognition, with an accuracy of 91.98%, and a Matthews correlation coefficient of 0.84 on binary classification. Such enhancements to existing methods shows that the suggested approach can assist medical experts in automated detection of DFI.

Leave a Reply

This site uses Akismet to reduce spam. Learn how your comment data is processed.

Up ↑

%d bloggers like this:
Verified by MonsterInsights